Refine your search:     
Report No.
 - 

Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium

Yang, P.-J.*; Li, Q.-J.*; Tsuru, Tomohito; Ogata, Shigenobu*; Zhang, J.-W.*; Sheng, H.-W.*; Shan, Z.-W.*; Sha, G.*; Han, W.-Z.*; Li, J.*; Ma, E.*

Body-centred-cubic metallic materials, such as niobium (Nb) and other refractory metals, are prone to embrittlement due to low levels of oxygen solutes. The mechanisms responsible for the oxygen-induced rampant hardening and damage are unclear. Here we illustrate that screw dislocations moving through a random repulsive force field imposed by impurity oxygen interstitials readily form cross-kinks and emit excess vacancies in Nb. The vacancies bind strongly with oxygen and screw dislocation in a three-body fashion, rendering dislocation motion difficult and hence pronounced dislocation storage and hardening. This leads to unusually high strain hardening rates and fast breeding of nano-cavities that underlie damage and failure.

Accesses

:

- Accesses

InCites™

:

Percentile:7.56

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.