Release behavior of radionuclides from MOX fuels irradiated in a fast reactor during heating tests
Tanaka, Kosuke ; Sato, Isamu*; Onishi, Takashi ; Ishikawa, Takashi ; Hirosawa, Takashi ; Katsuyama, Kozo ; Seino, Hiroshi ; Ohno, Shuji ; Hamada, Hirotsugu ; Tokoro, Daishiro*; Sekioka, Ken*; Suto, Mitsuo*
In order to obtain the release rate coefficients from fuels for fast reactors (FRs), heating tests and the subsequent analyses of the fission products (FPs) and actinides that are released were carried out using samples of uranium-plutonium mixed oxide (MOX) fuel pellets irradiated at the experimental fast reactor Joyo. Three heating tests targeting temperatures of 2773, 2973 and 3173 K were conducted using an FP release behavior test apparatus equipped with a high-frequency induction furnace and solid FP sampling systems consisting of a thermal gradient tube (TGT) and filters. Irradiated fuel pellets were placed into a tungsten crucible, then loaded into the induction furnace. The temperature was raised continuously at a heating rate of 10 K/s to the targeted temperature and maintained for 500 s in a flowing argon gas atmosphere. The FPs and actinides released from the MOX fuels and deposited in the TGT and filters were quantified by gamma-ray spectrometry and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Based on the analysis, the release rates of radionuclides from MOX fuels for FR were obtained and compared with literature data for light water reactor (LWR) fuels. The release rate coefficients of FPs obtained in this study were found to be similar to or lower than the literature values for LWR fuels. It was also found that the release rate coefficient data for actinides were within the range of variation of literature values for LWR fuels.