Refine your search�ソスF     
Report No.

Fracture limit of high-burnup advanced fuel cladding tubes under loss-of-coolant accident conditions

Narukawa, Takafumi ; Amaya, Masaki  

To evaluate the fracture limit of high-burnup advanced fuel cladding tubes under loss-of-coolant accident (LOCA) conditions, laboratory-scale integral thermal shock tests were performed using the following advanced fuel cladding tubes with burnups of 73 - 85 GWd/t: M-MDA$textsuperscript{texttrademark}$, low-tin ZIRLO$textsuperscript{texttrademark}$, M5$textsuperscript{textregistered}$, and Zircaloy-2 (LK3). In total eight integral thermal shock tests were performed for these specimens, simulating LOCA conditions including ballooning and rupture, oxidation, hydriding, and quenching. During the tests, the specimens were oxidized to 10% - 30% equivalent cladding reacted (ECR) at approximately 1473 K and were quenched under axial restraint load of approximately 520 - 530 N. The effects of burnup extension and use of the advanced fuel cladding tubes on the ballooning and rupture, oxidation, and hydriding under LOCA conditions were inconsiderable. Further, the high-burnup advanced fuel cladding tube specimens did not fracture in the ECR values equal to or lower than the fracture limits of the unirradiated Zircaloy-4 cladding tube reported in previous studies. Therefore, it can be concluded that the fracture limit of fuel cladding tubes is not significantly reduced by extending the burnup to approximately 85 GWd/t and using the advanced fuel cladding tubes, though it slightly decreases with increasing initial hydrogen concentration.



- Accesses




Category:Nuclear Science & Technology



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.