Refine your search:     
Report No.
 - 

DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle

Matsuya, Yusuke; Satou, Yukihiko ; Hamada, Nobuyuki*; Date, Hiroyuki*; Ishikawa, Masayori*; Sato, Tatsuhiko

Insoluble radioactive microparticles (so called Cs-bearing particles) have been assumed to adhere in the long term to trachea after aspirated into respiratory system, leading to heterogeneous dose distribution within healthy tissue around the particles. The biological effects posed by such a particle remain unclear. Here, we show cumulative DNA damage in cultured cells proximal and distal to the particle under localized chronic exposure in comparison with uniform exposure. We placed the particle-contained microcapillary onto a glass-base dish containing normal human lung cells in vitro, and observed a significant change in nuclear $$gamma$$-H2AX foci after 24 h or 48 h exposure to the particle. The dose calculation by a Monte Carlo simulation and the comparison with nuclear foci under uniform exposure suggested that the localized exposure to a Cs-bearing particle leads to not only signal-induced DNA damage to distal cells but also the reduction of DNA damage induction yield to proximal cells (protective effects). Considering the small organ dose, the conventional radiation risk assessment is adequate. This study is the first to quantify the spatial distribution of cumulative DNA lesions under heterogeneous exposure by insoluble Cs-bearing particles.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.