Refine your search:     
Report No.

The Deposition densities of radiocesium and the air dose rates in undisturbed fields around the Fukushima Dai-ichi nuclear power plant; Their temporal changes for five years after the accident

Mikami, Satoshi  ; Tanaka, Hiroyuki*; Matsuda, Hideo*; Sato, Shoji*; Hoshide, Yoshifumi*; Okuda, Naotoshi*; Suzuki, Takeo*; Sakamoto, Ryuichi*; Ando, Masaki; Saito, Kimiaki

The deposition densities of radiocesium and the air dose rates were repeatedly measured in a large number of undisturbed fields within the 80km zone that surrounds the Fukushima Dai-ichi Nuclear Power Plant site between 2011 and 2016, and features of their temporal changes were clarified. The average air dose rate excluding background radiation in this zone decreased to about 20% of the initial value during the period from June 2011 to August 2016, which was essentially a result of the radioactive decay of $$^{134}$$Cs with a half-life of 2.06y. The air dose rate reduction was faster than that expected from the decay of radiocesium by a factor of about two, with most of this reduction being attributed to the penetration of radiocesium into the soil. The average deposition densities of $$^{134}$$Cs and $$^{137}$$Cs in fields that were not decontaminated were found to have decreased nearly according to their expected radioactive decay, which indicated that the movement of radiocesium in the horizontal direction was relatively small. The effect of decontamination was apparently observed in the measurements of air dose rates and deposition densities. Nominally, the average air dose rates in the measurement locations were reduced by about 20% by decontamination and other human activities, of which accurate quantitative analysis is and continue to be a challenge.



- Accesses




Category:Environmental Sciences



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.