Refine your search:     
Report No.

Quantum dynamics of hydrogen in the iron-based superconductor LaFeAsO$$_{0.9}$$D$$_{0.1}$$ measured with inelastic neutron spectroscopy

Yamaura, Junichi*; Hiraka, Haruhiro*; Iimura, Soshi*; Muraba, Yoshinori*; Bang, J.*; Ikeuchi, Kazuhiko*; Nakamura, Mitsutaka  ; Inamura, Yasuhiro ; Honda, Takashi*; Hiraishi, Masatoshi*; Kojima, Kenji*; Kadono, Ryosuke*; Kuramoto, Yoshio*; Murakami, Yoichi*; Matsuishi, Satoru*; Hosono, Hideo*

Inelastic neutron scattering was performed for an iron-based superconductor, where most of D (deuterium) replaces oxygen, while a tiny amount goes into interstitial sites. By first-principle calculation, we characterize the interstitial sites for D (and for H slightly mixed) with four equivalent potential minima. Below the superconducting transition temperature Tc = 26 K, new excitations emerge in the range 5-15 meV, while they are absent in the reference system LaFeAsO$$_{0.9}$$F$$_{0.1}$$. The strong excitations at 14.5 meV and 11.1 meV broaden rapidly around 15 K and 20 K, respectively, where each energy becomes comparable to twice of the superconducting gap. The strong excitations are ascribed to a quantum rattling, or a band motion of hydrogen, which arises only if the number of potential minima is larger than two.



- Accesses




Category:Materials Science, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.