Refine your search:     
Report No.
 - 

Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water

Matsuya, Yusuke  ; Kai, Takeshi   ; Yoshii, Yuji*; Yachi, Yoshie*; Naijo, Shingo*; Date, Hiroyuki*; Sato, Tatsuhiko   

Biological effects after ionizing radiation exposure arise from initial DNA strand breaks. DNA damage can be estimated from the simulation with both track structure analysis and diffusion of free radicals; however, the simulation is a time-consuming process. In this study, we present a simple model for estimating yields of strand breaks based only on spatial patterns of inelastic interactions (i.e., ionization and electronic excitation) generated by electrons, which are evaluated by PHITS code without considering the production and diffusion of free radicals. In this model, the number of events per track and that of the two events pair within 3.4 nm (corresponding to 10 base pair) were stochastically sampled for calculating SSB and DSB yields, respectively. The calculated results agreed well with other simulations and experimental data on DSB yield and yield ratio of DSB/SSB for the exposure to mono-energetic electrons. The present model also can demonstrate the relative biological effectiveness at the DSB endpoint for various photon exposures. This study indicated that the spatial pattern of inelastic events composed of ionization and electronic excitation is sufficient to obtain the impact of electrons on initial induction to DNA strand break.

Accesses

:

- Accesses

InCites™

:

Percentile:81.46

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.