Refine your search:     
Report No.
 - 

Boron chemistry during transportation in the high temperature region of a boiling water reactor under severe accident conditions

Miwa, Shuhei  ; Takase, Gaku; Imoto, Jumpei ; Nishioka, Shunichiro; Miyahara, Naoya; Osaka, Masahiko  

For the evaluation of transport behavior of control material boron in a severe accident of BWR from the viewpoint of chemical effects on cesium and iodine behavior, boron chemistry during transportation in the high temperature region above 400 K was experimentally investigated. The heating tests of boron oxide specimen were conducted using the dedicated experimental apparatus reproducing fission product release and transport in steam atmosphere. Released boron oxide vapor was deposited above 1,000 K by the condensation onto stainless steel. The boron deposits and/or vapors significantly reacted with stainless steel above 1,000 K and formed the stable iron-boron mixed oxide (FeO)$$_{2}$$BO$$_{3}$$. These results indicate that released boron from degraded BWR control blade in a severe accident could remain in the high temperature region such as a Reactor Pressure Vessel. Based on these results, it can be said that the existence of boron deposits in the high temperature region would decrease the amount of transported cesium vapors from a Reactor Pressure Vessel due to possible formation of low volatile cesium borate compounds by the reaction of boron deposits with cesium vapors.

Accesses

:

- Accesses

InCites™

:

Percentile:55.67

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.