Refine your search:     
Report No.

Coexistence of ferromagnetic and stripe-type antiferromagnetic spin fluctuations in YFe$$_{2}$$Ge$$_{2}$$

Wo, H.*; Wang, Q.*; Shen, Y.*; Zhang, X.*; Hao, Y.*; Feng, Y.*; Shen, S.*; He, Z.*; Pan, B.*; Wang, W.*; Nakajima, Kenji  ; Kawamura, Seiko; Steffens, P.*; Boehm, M.*; Schmalzl, K.*; Forrest, T. R.*; Matsuda, Masaaki*; Zhao, Y.*; Lynn, J. W.*; Yin, Z.*; Zhao, J.*

We report neutron scattering measurements of single-crystalline YFe$$_{2}$$Ge$$_{2}$$ in the normal state, which has the same crystal structure as the 122 family of iron pnictide superconductors. YFe$$_{2}$$Ge$$_{2}$$ does not exhibit long-range magnetic order but exhibits strong spin fluctuations. Like the iron pnictides, YFe$$_{2}$$Ge$$_{2}$$ displays anisotropic stripe-type antiferromagnetic spin fluctuations at ($$pi, 0, pi$$). More interesting, however, is the observation of strong spin fluctuations at the in-plane ferromagnetic wave vector ($$0, 0, pi$$). These ferromagnetic spin fluctuations are isotropic in the ($$H, K$$) plane, whose intensity exceeds that of stripe spin fluctuations. Both the ferromagnetic and stripe spin fluctuations remain gapless down to the lowest measured energies. Our results naturally explain the absence of magnetic order in YFe$$_{2}$$Ge$$_{2}$$ and also imply that the ferromagnetic correlations may be a key ingredient for iron-based materials.



- Accesses




Category:Physics, Multidisciplinary



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.