Refine your search:     
Report No.
 - 

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool; Confirmation of fuel temperature calculation function with oxidation reaction in the SAMPSON code

Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Air oxidation models based on oxidation data obtained on the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents. The rapid fuel rod temperature rise due to the Zr air oxidation reaction could be reasonably evaluated by the SAMPSON analysis. The SFP accident analyses were conducted with different initial water levels which were no water, water level at bottom of active fuel, and water level at half of active fuel. The present analysis showed that the earliest temperature rise of the fuel rod surface occurred when there was no water in the SFP and natural circulation of air became possible.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.