Refine your search:     
Report No.
 - 

First-principles modeling for dislocation motion of HEA alloys

Tsuru, Tomohito   ; Itakura, Mitsuhiro  ; Yuge, Koretaka*; Aoyagi, Yoshiteru*; Shimokawa, Tomotsugu*; Kubo, Momoji*; Ogata, Shigenobu*

High entropy alloys (HEAs) are chemically complex single- or multi-phase alloys with crystal structures. There are no major components but five or more elements are included with near equiatomic fraction. In such a situation, deformation behavior can no longer be described by conventional solid solution strengthening model. Some HEAs, indeed, show higher strengthening behavior and anomalous slip. However, the mechanisms of these features have yet to be understood. In the present study, we investigate the core structure of dislocations in BCC-HEAs using density functional theory (DFT) calculations. We found that core structure of a screw dislocation is identified as is the case with common BCC metals. On the other hand, dislocation motion should be different from pure BCC metals because of chemical and configurational disorder around dislocation core. We confirmed the specific feature of dislocation motion in HEAs by two-dimensional Peierls potential surface.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.