Refine your search:     
Report No.
 - 

Mode distribution analysis for superionic melt of CuI by coherent quasielastic neutron scattering

Kawakita, Yukinobu ; Kikuchi, Tatsuya* ; Tahara, Shuta*; Nakamura, Mitsutaka  ; Inamura, Yasuhiro ; Maruyama, Kenji*; Yamauchi, Yasuhiro*; Kawamura, Seiko  ; Nakajima, Kenji  

CuI is a well-known superionic conductor in a high temperature solid phase where the mobile cations migrate between interstitial sites in the f.c.c. sublattice formed by iodine ions. Even in the molten state, it shows several features suggesting collective or cooperative ionic motion. MD results show that Cu diffuses much faster than I. The Cu-Cu partial structure factor have a FSDP which indicates a medium-range ordering of Cu ions. Moreover the Cu-Cu partial pair distribution deeply penetrates into the nearest neighboring Cu-I shell. To reveal origin such anomalous behaviors of molten CuI, we performed quaiselastic neutron scattering (QENS) by the disk-chopper spectrometer AMATERAS at MLF, J-PARC. To interpret the total dynamic structure factor obtained from coherent QENS, the mode distribution analysis was applied. It is found that the motion of iodine is a kind of fluctuating within an almost local area while Cu ions diffuse much faster than iodine ions.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.