Refine your search:     
Report No.

Evaluation of decay heat value from high-level liquid waste; Data for safety assessment of partitioning process

Morita, Yasuji; Tsubata, Yasuhiro 

Decay heat from radioactive elements in high-level liquid waste (HLLW) and separated solutions in partitioning process was evaluated as a basic data for safety assessment of partitioning process. In the evaluation of HLLW from spent UO$$_{2}$$ fuel burned-up to 45 GWd/t in light water reactor, decay heat value from fission products decreased as the cooling period become longer but heat from actinides, Am and Cm, was almost constant until 50-year cooling. Decay heat density in solutions of Am, Cm and rare earth elements and of Am and Cm without concentration for volume reduction does not exceed the heat density of HLLW, but the concentration should be required to minimize the scale of the partitioning process. Separated solution of Am and Cm must be concentrated to convert the two elements to a solid state to make fuel for transmutation, and the decay heat density of the concentrated solution of Am and Cm is 10 times higher compared with the Pu solution of same element concentration. Higher burn-up UO$$_{2}$$ fuel and MOX fuel in light water reactor and minor-actinide-recycled MOX fuel in fast reactor were also considered and the evaluated decay heat was compared among the spent fuels.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.