Refine your search:     
Report No.

Development of experiment system for tritium release behavior from mercury spallation neutron target at J-PARC

Masuda, Shiho; Kai, Tetsuya   ; Harada, Masahide   ; Kinoshita, Hidetaka   ; Wakai, Eiichi  ; Nemoto, Hideyuki; Ikeda, Yujiro; Haga, Katsuhiro  

In the Materials and Life science experimental Facility at J-PARC, pulsed neutrons are provided by a mercury target via spallation reactions. During the target vessel replacement, gaseous spallation products are released from the mercury circulation system to outside. The release of radioactive gases needs to be reduced to a negligibly small level by a purging process in advance of replacement. The radioactivity of noble gases decreased by the purging process while that of tritium was almost unchanged. It is considered that most of tritium produced in mercury is accumulated in the vessel made of stainless-steel and is gradually desorbed during the purging and the vessel replacement. However, there have been no effective data associated with tritium behavior in an environment of mercury spallation target. Then, authors decided to develop an experimental system to understand these phenomena quantitatively and to discuss procedures to minimize tritium release during the vessel replacement. As a first step, we start experiments using deuterium before using tritium. Accumulation and release behaviors of deuterium to stainless-steel are examined under vacuum, controlled humidity and mercury coexistence conditions. Results are expected to be used to establish safer the target vessel replacement.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.