Refine your search:     
Report No.
 - 

Screw dislocation behavior in BCC Fe; Study using molecular dynamics simulations

Suzudo, Tomoaki   ; Onitsuka, Takashi*; Fukumoto, Kenichi*

The irradiation produces various defects such as dislocation loops, voids, and solute clusters. Since they become obstacles for dislocations, research on the interaction between dislocations and obstacles has been pursued. Regarding the slip plane of BCC iron, the slip plane is {110} at low temperature but changes to {112} when the temperature increases to about room temperature; however, this phenomena has not been reproduced by molecular dynamics. We reconsidered the interatomic potential to reproduce the above temperature transition of the slip plane by molecular dynamics. In addition, the mechanism of the transition was discussed from the Peierls potential of the screw dislocation. As a result, it was found that the temperature transition of the slip plane can be reproduced by selecting an appropriate interatomic potential. It was also found that the temperature transition was likely to have been caused by temperature fluctuations of the lattice.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.