Refine your search:     
Report No.

A Numerical simulation method for core internals behavior in severe accident conditions; Chemical reaction analyses in core structures by JUPITER

Yamashita, Susumu ; Kino, Chiaki*; Yoshida, Hiroyuki 

In order to contribute the improvement of estimation accuracy for severe accident code such as SAMPSON, we have developed the chemical reaction model such as eutectic reaction and oxidation in micro scale, e.g., B$$_{4}$$C-SUS in the control rod blade and UO$$_{2}$$-Zry in fuel rods, and implemented them to the computational fluid dynamics code named JUPITER. And we try to develop the coupled analysis frame work using SAMPSON and JUPITER to decrease uncertainty due to micro scale phenomena which cannot be calculate by severe accident analysis codes. From the preliminary analysis in fuel rod heating analysis by JUPITER using SAMPSON output data, it was revealed that the implemented chemical reaction models work stably and obtain reasonable results.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.