Refine your search:     
Report No.
 - 

Coulomb spike modelling of ion sputtering of amorphous water ice

Constantini, J.-M.*; Ogawa, Tatsuhiko   

Sputtering, emission of constituent atoms or molecules of materials induced by irradiation, is regarded as one of standard engineering techniques. According to some experimental data, emission of atoms whose direction is anti-parallel to incident radiation momentum was found among the sputtered atoms. Based on the standard approach, the thermal-spike model, atoms are evaporated by equillibrated thermal canonical ensemble resulted in by heat propagation therefore emission must be isotropic. Inspired by the fact that ionizations induced by ion irradiation are arranged linearly along the ion path, and the electric repulsion force between the ionizations tend to be parallel to irradiation axis, we developed an alternative approach in this study to explain the anisotropic emission. Using the spatial configuration of the irradiation-induced positive ions calculated by track-structure calculation code RITRACKS, the momentum of ions driven by the electric force was calculated. The calculated result explains the inverse jet of ions in case of 1 MeV proton and 1 MeV/u carbon ion irradiation to water. Moreover, the calculated sputtering yield also agrees with earlier experimental data.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.