Refine your search:     
Report No.
 - 

Synchronized gravitational slope deformation and active faulting; A Case study on and around the Neodani fault, central Japan

Komura, Keitaro*; Kaneda, Heitaro*; Tanaka, Tomoki*; Kojima, Satoru*; Inoue, Tsutomu*; Nishio, Tomohiro

On the basis of pit excavations and sediment cores at an off-fault deep-seated gravitational slope deformation (DGSD) site and a trench excavation across the active Neodani fault at a nearby site, we examined the records of DGSD and surface-rupturing paleoearthquakes of the Neodani fault. We found the four most recent DGSD events and the four most recent surface-rupturing earthquakes, respectively and conclude that the ages of events are overlapped each other. We infer that static crustal strain from repeated seismogenic faulting plays an important role in the occurrence of DGSD events, at least in the immediate vicinity of active faults, although coseismic severe shaking would have at least some effect on them. Our case study suggests that off-fault DGSDs can be used to reconstruct or refine the paleoseismic history of a nearby active fault.

Accesses

:

- Accesses

InCites™

:

Percentile:9.84

Category:Geography, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.