Refine your search:     
Report No.
 - 

Whole-core Monte Carlo burnup calculation for RBWR by parallel computing

Miwa, Junichi*; Hino, Tetsushi*; Mitsuyasu, Takeshi*; Nagaya, Yasunobu  

We performed whole-core Monte Carlo calculations for core design verification of an innovative BWR concept, resource-renewable boiling water reactor (RBWR). The calculations include a coupled neutronics/thermal-hydraulics calculation with a continuous-energy Monte Carlo code MVP and an inhouse thermal-hydraulics code, and a burnup calculation with the MVP-BURN code. Such calculations for the RBWR is challenging because it requires a large memory size and a large amount of calculation time. The typical memory size required for the RBWR calculations was an order of 10 GBytes per CPU in parallel computing using a desktop PC cluster. The total calculation time for calculating the characteristics of the equilibrium core of RBWR with the whole-core Monte Carlo burnup calculation using the desktop PC cluster was about 20 days. We demonstrated that the design calculations for the RBWR were possible with such a desktop PC cluster.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.