Refine your search:     
Report No.

Investigation on velocity distribution in the subchannels of pin bundle with wrapping wire; Evaluation of Reynolds number dependence in 3-pin bundle

Aizawa, Kosuke ; Hiyama, Tomoyuki ; Nishimura, Masahiro ; Kurihara, Akikazu ; Ishida, Katsuji*

A sodium-cooled fast reactor is designed to attain a high burn-up core in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, the deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the flow velocity distribution in a wire wrapped pin bundle. In this study, the detailed flow velocity distribution in the subchannel has been obtained by PIV (Particle Image Velocimetry) measurement using a wire-wrapped 3-pin bundle water model. Flow velocity conditions in the pin bundle were set from 0.036 m/s ($$Re$$ = 270) to 1.6m/s ($$Re$$ = 13,500). From the PIV results, the maximum flow velocity was increased by decreasing the $$Re$$ number in the region away from the wrapping wire. Moreover, the PIV measurements by using the 3-pin bundle geometry without the wrapping wire were conducted. From the results, the effect of the wrapping wire on the flow field in the subchannel was understood. There experimental results useful not only for understanding of pin bundle thermal hydraulics but also code validation.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.