Refine your search:     
Report No.

Hydriodic iodide and iodine permeation characteristics of fluoropolymers as a lining material

Tanaka, Nobuyuki ; Noguchi, Hiroki ; Kamiji, Yu; Takegami, Hiroaki ; Kubo, Shinji 

The thermochemical water-splitting iodine-sulfur (IS) process requires corrosion-resistant materials owing to usage of a mixture of HI-I$$_{2}$$-H$$_{2}$$O. Fluoropolymers, such as PTFE and PFA, are adaptable as lining materials for protecting plant components. However, there has been a concern: PTFE and PFA have the ability to permeate various permeants. From the viewpoint of corrosion, the permeation of HI and I$$_{2}$$ should be evaluated to improve the integrity of the IS process. In this study, permeation tests on PTFE and PFA membranes were performed to measure the permeated fluxes of HI and I$$_{2}$$, and the effects of the operating conditions on them were investigated. The introduction of a permeability parameter could be successful for normalizing the permeated fluxes for a specific membrane thickness and a vapor pressure. Then, the empirical formula of the permeability was given as an Arrhenius-type equation to use as a plant design.



- Accesses




Category:Chemistry, Physical



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.