Refine your search:     
Report No.
 - 

Derivation of ideal power distribution to minimize the maximum kernel migration rate for nuclear design of pin-in-block type HTGR

Okita, Shoichiro  ; Fukaya, Yuji   ; Goto, Minoru  

Suppressing the kernel migration rates, which depend on both the fuel temperature and the fuel temperature gradient, under normal operation condition is quite important from the viewpoint of the fuel integrity for High Temperature Gas-cooled Reactors. The presence of the ideal axial power distribution to minimize the maximum kernel migration rate allows us to improve efficiency of design work. Therefore, we propose a new method based on Lagrange multiplier method in consideration of thermohydraulic design in order to obtain the ideal axial power distribution to minimize the maximum kernel migration rate. For one of the existing conceptual designs performed by JAEA, the maximum kernel migration rate for the power distribution to minimize the maximum kernel migration rate proposed in this study is lower by approximately 10% than that for the power distribution as a conventional design target to minimize the maximum fuel temperature.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.