Refine your search:     
Report No.
 - 

Radon measurements with a compact, organic-scintillator-based alpha/beta spectrometer

Morishita, Yuki   ; Ye, Y.*; Mata, L.*; Pozzi, S. A.*; Kearfott, K. J.*

We have developed a compact, organic-scintillator-based alpha/beta spectrometer for radon measurements and have characterized it using a unique, small radon chamber. The spectrometer is composed of a through-silicon via (TSV) silicon photomultiplier (or SiPM) and a 6 mm $$times$$ 6 mm $$times$$ 6 mm stilbene crystal cube. Analog signals from the SiPM are sent to a digitizer. The detector is housed in a light-tight box, with a stacked air filter installed in one side of the box to enable $$^{222}$$Rn gas to diffuse to the inside. We conducted one experiment with the spectrometer and an AlphaGUARD detector placed in a basement at the University of Michigan, and we conducted other experiments with both detectors placed in a small radon chamber together with $$^{226}$$Ra sources. By applying a pulse-shape-discrimination technique, we were able to separate the alpha and beta spectra simultaneously and clearly and to measure them quantitatively. We found two peaks in the measured alpha spectrum: a lower-energy peak due to $$^{218}$$Po and a higher-energy peak due to $$^{214}$$Po. We found a linear relation between the radon concentration y from AlphaGUARD and the counting rates from the stilbene-SiPM detector. The alpha/beta spectrometer is less than 10 mm thick, and we expect that it will be easy to increase the sensitivity with future device construction. Thus, this compact, organic-scintillator-based alpha/beta spectrometer shows promise for use in novel radon-detection systems.

Accesses

:

- Accesses

InCites™

:

Percentile:60.71

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.