Measurement of double-differential thick-target neutron yields of the C() reaction at 12, 20, and 30 MeV
Patwary, M. K. A*; Kin, Tadahiro*; Aoki, Katsumi*; Yoshinami, Kosuke*; Yamaguchi, Masaya*; Watanabe, Yukinobu*; Tsukada, Kazuaki ; Sato, Nozomi*; Asai, Masato ; Sato, Tetsuya ; Hatsukawa, Yuichi; Nakayama, Shinsuke
While designing deuteron accelerator neutron sources for radioisotopes production, nuclear data for light elements such as Li, Be, and C have been systematically measured in the deuteron energy range from a few MeV to around 50 MeV. Currently, the experimental data available on double-differential thick-target neutron yields (DDTTNYs) is insufficient, especially for deuteron energies between 18 and 33 MeV. In this study, we measured the DDTTNYs of () reactions on C target for incident deuteron energies of 12, 20, and 30 MeV using the multiple-foils activation method to improve nuclear data insufficiency. We applied the GRAVEL code for the unfolding process to derive the DDTTNYs. The results were compared with the calculation by DEURACS. The present data were also used to confirm the systematics of the differential neutron yields at 0 and total neutron yield per incident deuteron in the wide range of deuteron energy.