Refine your search:     
Report No.

Ensemble wind simulations using a mesh-refined lattice Boltzmann method on GPU-accelerated systems

Hasegawa, Yuta  ; Onodera, Naoyuki  ; Idomura, Yasuhiro

The wind condition and the plume dispersion in urban areas are strongly affected by buildings and plants, which are hardly described in the conventional mesoscale simulations. To resolve this issue, we developed a GPU-based CFD code using a mesh-refined lattice Boltzmann method (LBM), which enables real-time plume dispersion simulations with a resolution of several meters. However, such high resolution simulations are highly turbulent and the time histories of the results are sensitive to various simulations conditions. In order to improve the reliability of such chaotic simulations, we developed an ensemble simulation approach, which enables a statistical estimation of the uncertainty. We examined the developed code against the field experiment JU2003 in Oklahoma City. In the comparison, the wind conditions showed good agreements, and the average values of the tracer gas concentration satisfied the factor 2 agreements between the ensemble simulation data and the experiment.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.