Refine your search:     
Report No.

Molecular dynamics study of phosphorus migration in $$Sigma$$5 grain boundary of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki 

Phosphorus (P) is known as one of the elements which cause the grain boundary (GB) embrittlement in steels and its GB segregation is promoted by the increase of vacancies and self-interstitial atoms due to irradiation. Thus we have been developing the rate-theory model for estimating GB P segregation under several temperatures and irradiation conditions. Because the model does not include the trapping and de-trapping processes properly, however, the model cannot calculate GB P coverage which is measured by experiments. As for the de-trapping process, so far, we have considered the migration of a P atom in the GB region of $$Sigma$$3 symmetrical tilt GB using molecular dynamics (MD). In the current study, we also simulated the P migration in $$Sigma$$5 GB using MD and compared the result with that of $$Sigma$$3. As a result, at 800K, it was found that a P atom cannot migrate in $$Sigma$$5 without vacancies while a P atom can migrate between iron atoms in $$Sigma$$3.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.