Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence
トロイダル電子温度勾配駆動乱流における帯状流と等方的渦の自己組織化
河合 智賀*; 井戸村 泰宏 ; 小川 雄一*; 山田 弘司*
Kawai, Chika*; Idomura, Yasuhiro; Ogawa, Yuichi*; Yamada, Hiroshi*
弱磁気シアにおける大域的ジャイロ運動論モデルに基づいてトロイダル電子温度勾配駆動(ETG)乱流を調べた。大域的分布効果のために高トロイダルモード数nのトロイダルETGモードは外側の磁気面で励起され、強い線形分散をもたらす。この結果得られる非等方な波-乱流境界とエネルギー逆カスケードが帯状流の自己組織化を生成する。これは大域的ジャイロ運動論モデル特有の機構である。この自己組織化はランダムノイズによって初期化した減衰乱流とトロイダルETG乱流の両方で確認された。また、イオン電子温度比と乱流強度が決める臨界パラメータによってこの自己組織化過程が帯状流と等方的渦を生成することも示した。
Self-organization in the toroidal electron temperature gradient driven (ETG) turbulence is investigated based on a global gyrokinetic model in a weak magnetic shear configuration. Because of global profile effects, toroidal ETG modes with higher toroidal mode number n are excited at the outer magnetic surfaces, leading to strong linear wave dispersion. The resulting anisotropic wave turbulence boundary and the inverse energy cascade generate the self-organization of zonal flows, which is the unique mechanism in the global gyrokinetic model. The self-organization is confirmed both in the decaying turbulence initialized by random noises and in the toroidal ETG turbulence. It is also shown that the self-organization process generates zonal flows and isotropic eddies depending on a criterion parameter, which is determined by the ion to electron temperature ratio and the turbulence intensity.