Refine your search:     
Report No.

Numerical simulation of oxygen infusion into desaturation resulting from artificial openings in sedimentary formations

Miyakawa, Kazuya  ; Aoyagi, Kazuhei ; Akaki, Toshifumi*; Yamamoto, Hajime*

Desaturation is expected due to excavation of an underground repository, especially in the newly created fractures zone (EDZ). During the construction and operation of facilities, the air in the gallery infuses into the rock around the gallery though the excavation affected area and causes oxidation of host rock and groundwater, which increase nuclide mobilities. In the Horonobe underground research laboratory (HURL), which is excavated in the Neogene sedimentary formations, no pyrite dissolution or precipitation of calcium sulfates was found from the cores drilled in the rock around the gallery. The reason for no oxidation is estimated that the release of dissolved gases from groundwater due to pressure decrease flows against the air infusion. In this research, the mechanism of O$$_{2}$$ intrusion into the rock was investigated by numerical multiphase flow simulation considering advection and diffusion of groundwater and gases. In the simulation, only Darcy's and Henry's laws were considered, that is, chemical reaction related to oxidation was not handled. The effects of dissolved gas and rock permeability on O$$_{2}$$ infusion into the rock were almost identical. Decreasing humidity with relatively low permeability leads to extensive accumulation of O$$_{2}$$ into the EDZ even though with a relatively large amount of dissolved gas. In the HURL, the shotcrete attenuates O$$_{2}$$ concentration and keeps 100% humidity at the boundary of the gallery wall, which inhibits O$$_{2}$$ infusion. Without the shotcrete, humidity at the gallery wall decreases according to seasonal changes and ventilation, which promotes O$$_{2}$$ intrusion into the EDZ but the chemical reaction related to O$$_{2}$$ buffering such as pyrite oxidation consumes O$$_{2}$$.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.