=0 long-range magnetic order in centennialite CaCu(OD)Cl 0.6DO; A Spin- perfect kagome antiferromagnet with --
Iida, Kazuki*; Yoshida, Hiroyuki*; Nakao, Akiko*; Jeschke, H. O.*; Iqbal, Y.*; Nakajima, Kenji ; Kawamura, Seiko ; Munakata, Koji*; Inamura, Yasuhiro ; Murai, Naoki ; Ishikado, Motoyuki*; Kumai, Reiji*; Okada, Takehisa*; Oda, Migaku*; Kakurai, Kazuhisa*; Matsuda, Masaaki*
Crystal and magnetic structures of the mineral centennialite CaCu(OD)Cl 0.6DO are investigated by means of synchrotron X-ray diffraction and neutron diffraction measurements complemented by density functional theory (DFT) and pseudofermion functional renormalization group (PFFRG) calculations. In CaCu(OD)Cl 0.6DO, Cu ions form a geometrically perfect kagome network with antiferromagnetic . No intersite disorder between Cu and Ca ions is detected. CaCu(OD)Cl 0.6DO enters a magnetic long-range ordered state below = 7.2 K, and the =0 magnetic structure with negative vector spin chirality is obtained. The ordered moment at 0.3 K is suppressed to 0.58(2)B. Our DFT calculations indicate the presence of antiferromagnetic and ferromagnetic superexchange couplings of a strength which places the system at the crossroads of three magnetic orders (at the classical level) and a spin- PFFRG analysis shows a dominance of =0 type magnetic correlations, consistent with and indicating proximity to the observed =0 spin structure. The results suggest that this material is located close to a quantum critical point and is a good realization of a -- kagome antiferromagnet.