Refine your search:     
Report No.

Fine-structure analysis of perhydropolysilazane-derived nano layers in deep-buried condition using polarized neutron reflectometry

Akutsu, Kazuhiro*; Kira, Hiroshi*; Miyata, Noboru*; Hanashima, Takayasu*; Miyazaki, Tsukasa*; Kasai, Satoshi*; Yamazaki, Dai ; Soyama, Kazuhiko ; Aoki, Hiroyuki 

A large background scattering originating from the sample matrix is a major obstacle for fine-structure analysis of a nanometric layer buried in a bulk material. As polarization analysis can decrease undesired scattering in a neutron reflectivity (NR) profile, we performed NR experiments with polarization analysis on a polypropylene (PP)/perhydropolysilazane-derived SiO$$_{2}$$ (PDS)/Si substrate sample, having a deep-buried layer of SiO$$_{2}$$ to elucidate the fine structure of the nano-PDS layer. This method offers unique possibilities for increasing the amplitude of the Kiessig fringes in the higher scattering vector (Qz) region of the NR profiles in the sample by decreasing the undesired background scattering. Fitting and Fourier transform analysis results of the NR data indicated that the synthesized PDS layer remained between the PP plate and Si substrate with a thickness of approximately 109 ${AA}$;. Furthermore, the scattering length density of the PDS layer, obtained from the background subtracted data appeared to be more accurate than that obtained from the raw data. Although the density of the PDS layer was lower than that of natural SiO$$_{2}$$, the PDS thin layer had adequate mechanical strength to maintain a uniform PDS layer in the depth-direction under the deep-buried condition.



- Accesses




Category:Polymer Science



[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.