Refine your search:     
Report No.
 - 

Thermal-neutron capture cross-section measurement of tantalum-181 using graphite thermal column at KUR

Nakamura, Shoji ; Shibahara, Yuji*; Endo, Shunsuke  ; Kimura, Atsushi  

In a well-thermalized neutron field, it is principally possible to drive a thermal-neutron capture cross-section without considering an epithermal neutron component. This was demonstrated by a neutron activation method using the graphite thermal column (TC-Pn) of the Kyoto University Research Reactor. First, in order to confirm that the graphite thermal column was a well-thermalized neutron field, neutron irradiation was performed with neutron flux monitors: $$^{197}$$Au, $$^{59}$$Co, $$^{45}$$Sc, $$^{63}$$Cu, and $$^{98}$$Mo. The TC-Pn was confirmed to be extremely thermalized on the basis of Westcott's convention, because the thermal-neutron flux component took a constant value regardless of the sensitivity of each flux monitor to epithermal neutrons. Next, as a demonstration, the thermal-neutron capture cross section of $$^{181}$$Ta(n,$$gamma$$)$$^{182m+g}$$Ta reaction was measured using the graphite thermal column, and then derived to be 20.5$$pm$$0.4 barn, which supported the evaluated value of 20.4$$pm$$0.3 barn. The $$^{181}$$Ta nuclide could be useful as a flux monitor that complements the sensitivity between $$^{197}$$Au and $$^{98}$$Mo monitors.

Accesses

:

- Accesses

InCites™

:

Percentile:0.01

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.