Refine your search:     
Report No.
 - 

Porous metal-organic frameworks containing reversible disulfide linkages as cathode materials for lithium-ion batteries

Shimizu, Takeshi*; Wang, H.*; Matsumura, Daiju   ; Mitsuhara, Kei*; Ota, Toshiaki*; Yoshikawa, Hirofumi*

Three porous disulfide-ligand-containing metal-organic frameworks (DS-MOFs) and two nonporous coordination polymers with disulfide ligands (DS-CPs) with various structural dimensionalities were used as cathode active materials in lithium batteries. Charge/discharge performance examinations revealed that only porous DS-MOF-based batteries exhibited significant capacities close to the theoretical values, which was ascribed to the insertion of electrolyte ions into the DS-MOFs. Battery reactions were probed by instrumental analyses. The dual redox reactions of metal ions and disulfide ligands in the MOFs resulted in higher capacities, and the presence of reversible electrochemically dynamic S-S bonds stabilized the cycling performance. Thus, the strategy of S-S moiety trapping in MOFs and the obtained correlation between the structural features and battery performance could contribute to the design of high-performance MOF-based batteries and the practical realization of Li-S batteries.

Accesses

:

- Accesses

InCites™

:

Percentile:77.17

Category:Chemistry, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.