Refine your search:     
Report No.
 - 

Dosimetry of radon progeny deposited on skin in air and thermal water

Sakoda, Akihiro   ; Ishimori, Yuu  ; Kanzaki, Norie   ; Tanaka, Hiroshi ; Kataoka, Takahiro*; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

It is held that the skin dose from radon progeny is not negligibly small and that introducing cancer is a possible consequence under normal circumstances, while there are a number of uncertainties in terms of related parameters such as activity concentrations in air, target cells in skin, skin covering materials, and deposition velocities. Meanwhile, an interesting proposal emerged in that skin exposure to natural radon-rich thermal water as part of balneotherapy can produce an immune response to induce beneficial health effects. The goal of the present study was to obtain generic dose coefficients with a focus on the radon progeny deposited on the skin in air or water in relation to risk or therapeutic assessments. We thus first estimated the skin deposition velocities of radon progeny in the two media based on data from the latest human studies. Using the optimized velocities, skin dosimetry was then performed under different assumptions regarding alpha-emitting source position and target cell (i.e., basal cells or Langerhans cells). Furthermore, the impact of the radon progeny deposition on effective doses from all exposure pathways relating to "radon exposure" was assessed using various possible scenarios. It was found that in both exposure media, effective doses from radon progeny inhalation are one to four orders of magnitude higher than those from the other pathways. In addition, absorbed doses on the skin can be the highest among all pathways when the radon activity concentrations in water are two or more orders of magnitude higher than those in air.

Accesses

:

- Accesses

InCites™

:

Percentile:38.06

Category:Biology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.