Refine your search:     
Report No.

Characterization of microstructures by X-ray diffraction line profile analysis, 2; Line profile analysis using synchrotron radiation

Shobu, Takahisa ; Shiro, Ayumi*; Yoshida, Yutaka*

Dislocation density is a very important physical quantity in the evaluation of fatigue of metallic materials. Generally, the dislocation density is evaluated by a scanning electron microscope. Recently, a method generated the dislocation density from the width of the X-ray diffraction profile has been proposed. In this study, we report the application of this technology to synchrotron radiation. Five diffraction profiles were obtained with a two-dimensional detector during tensile loading of the austenitic stainless steel SUS316L, and the dislocation density was calculated from the line profile analysis. As a result, the dislocation density increased sharply after plastic deformation, and the value was in good agreement with the result separately measured with a scanning electron microscope. In the future, it is expected that the line profile analysis will contribute to the elucidation of the mechanism of fatigue fracture by measuring the dislocation density from the local area in materials.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.