Refine your search:     
Report No.
 - 

The Role of silicon on solute clustering and embrittlement in highly neutron-irradiated pressurized water reactor surveillance test specimens

Takamizawa, Hisashi ; Hata, Kuniki ; Nishiyama, Yutaka ; Toyama, Takeshi*; Nagai, Yasuyoshi*

Solute clusters (SCs) formed in pressurized water reactor surveillance test specimens neutron-irradiated to a fluence of 1 $$times$$ 10$$^{20}$$ n/cm$$^{2}$$ were analyzed via atom probe tomography to understand the effect of silicon on solute clustering and irradiation embrittlement of reactor pressure vessel steels. In high-Cu bearing materials, Cu atoms were aggregated at the center of cluster surrounded by the Ni, Mn, and Si atoms like a core-shell structure. In low-Cu bearing materials, Ni, Mn, and Si atoms formed cluster and these solutes were not comprised core-shell structure in SCs. While the number of Cu atoms in clusters was decreased with decreasing nominal Cu content, the number of Si atoms had clearly increased. The cluster radius ($$r$$) and number density ($$N_{d}$$) decreased and increased, respectively, with increasing nominal Si content. The shift in the reference temperature for nil-ductility transition ($$Delta$$RT$$_{NDT}$$) showed a good correlation with the square root of volume fraction ($$V_{f}$$) multiplied by r ($$sqrt{V_{f}times {r}}$$). This suggested that the dislocation cutting through the particles mechanism dominates the precipitation hardening responsible for irradiation embrittlement. The negative relation between the nominal Si content and $$Delta$$RT$$_{NDT}$$ indicated that increasing of nominal Si content reduces the degree of embrittlement.

Accesses

:

- Accesses

InCites™

:

Percentile:31.78

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.