Refine your search�ソスF     
Report No.
 - 

Development of a membrane reactor with a closed-end silica membrane for nuclear-heated hydrogen production

Myagmarjav, O.  ; Tanaka, Nobuyuki ; Nomura, Mikihiro*; Noguchi, Hiroki  ; Imai, Yoshiyuki  ; Kamiji, Yu; Kubo, Shinji  ; Takegami, Hiroaki 

Hydrogen production from nuclear energy has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. With respect to the large-scale and economical production of hydrogen using nuclear energy, the thermochemical water-splitting iodine-sulfur (IS) process is a promising method. The IS process uses sulfur and iodine compounds to decompose water into its elemental constituents, hydrogen and oxygen, by using three coupled chemical reactions: the Bunsen reaction; sulfuric acid decomposition; and hydrogen iodide (HI) decomposition. The decomposition of HI is the efficiency-determining step of the process. In this work, a membrane reactor with a silica membrane closed on one end was designed, and its potential for hydrogen production from HI decomposition was explored. In the reactor-module design, only one end of the membrane tube was fixed, while the closed-end of the tube was freely suspended to avoid thermal expansion effects. The closed-end silica membranes were prepared for the first time by a counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. In application, HI conversion of greater than 0.60 was achieved at a decomposition temperature of 400$$^{circ}$$C. Thus, the membrane reactor with closed-end silica membrane was shown to produce a successful equilibrium shift in the production of hydrogen via HI decomposition in the thermochemical IS process.

Accesses

:

- Accesses

InCites™

:

Percentile:73.26

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.