Refine your search:     
Report No.
 - 

Large-eddy simulation of plume dispersion in the central district of Oklahoma City by coupling with a mesoscale meteorological simulation model and observation

Nakayama, Hiromasa   ; Takemi, Tetsuya*; Yoshida, Toshiya   

Contaminant gas dispersion within urban area resulting from accidental or intentional release is of great concern to public health and social security. When estimating plume dispersion in a built-up urban area under real meteorological conditions by computational fluid dynamics (CFD), a crucial issue is how to prescribe the model input conditions. There are typically two approaches: using the outputs of a meso-scale meteorological simulation (MMS) model and meteorological observations (OBS). However, the influence of the different approaches on the simulation results have not been fully demonstrated. In this study, we conducted large-eddy simulations (LESs) of plume dispersion in the urban central district under real meteorological conditions by coupling with a MMS model and OBS obtained at a single stationary point, and evaluated the two different coupling simulations in comparison with the field experimental data. The LES-MMS coupling showed better performance than the LES-OBS one. However, the latter one also showed a reasonable performance comparable to the acceptance criteria on the model prediction within a factor of two of the experimental data. These facts indicate that the approach of using observations at a single stationary point still has enough potential to drive CFD models for plume dispersion under real meteorological conditions.

Accesses

:

- Accesses

InCites™

:

Percentile:15.02

Category:Environmental Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.