検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Integrating deep learning-based object detection and optical character recognition for automatic extraction of link information from piping and instrumentation diagrams

深層学習を用いた物体検出と光学文字認識の統合による配管計装図からのリンク情報の自動抽出

Dong, F.*; Chen, S.*; 出町 和之*; 橋立 竜太 ; 高屋 茂 

Dong, F.*; Chen, S.*; Demachi, Kazuyuki*; Hashidate, Ryuta; Takaya, Shigeru

配管・計装図(P&ID)には、原子力発電所(NPP)の設計と管理に不可欠な計装および制御装置とともに、配管およびプロセス機器に関する情報が含まれる。P&IDには複雑なオブジェクトが多く、これらのオブジェクトとそれらのリンクされた情報がさまざまな図に不均衡に分布し複雑であるため、自動識別は困難である。したがって、P&IDは通常、手動で抽出および分析されるが、これには時間がかかり、エラーが発生しやすい。これらの問題に効率的に対処するため、最先端の深層学習ベースのオブジェクト検出と光学式文字認識(OCR)モデルを統合して、P&IDから情報を自動的に抽出した。さらに、低解像度の小さなオブジェクトを検出するためにスライディングウィンドウを用いた新しい画像前処理方法を提案した。提案された方法の性能を実験的に評価し、NPPのP&IDから情報を抽出できることを示した。

Piping and Instrumentation Diagrams contain information about the piping and process equipment together with the instrumentation and control devices, which is essential to the design and management of Nuclear Power Plants. There are abundant complex objects on P&IDs, with imbalanced distribution of these objects and their linked information across different diagrams. Therefore, the content of P&IDs is generally extracted and analyzed manually, which is time consuming and error prone. To efficiently address these issues, we integrate state-of-the-art deep learning-based object detection and Optical Character Recognition models to automatically extract link information from P&IDs. Besides, we propose a novel image pre-processing approach using sliding windows to detect low resolution small objects. The performance of the proposed approach was experimentally evaluated, and the experimental results demonstrate it capable to extract link information from P&IDs of NPPs.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.