Refine your search:     
Report No.
 - 

Calibration and optimization of Bragg edge analysis in energy-resolved neutron imaging experiments

Tremsin, A. S.*; Bilheux, H. Z.*; Bilheux, J. C.*; Shinohara, Takenao  ; Oikawa, Kenichi  ; Gao, Y.*

The investigation of microstructure of crystalline materials is one of the possible and frequently used applications of energy-resolved neutron imaging. The position of Bragg edges is defined by sharp changes in neutron transmission and can thus be determined by the measurement of the transmission spectra as a function of neutron wavelength. The accuracy of this measurement depends on both the data analysis technique and the quality of the measured spectra. While the optimization of reconstruction methods was addressed in several previous studies, here we introduce an important prerequisite when aiming for high resolution Bragg edge strain imaging - a well calibrated flight path across the entire field of view (FOV). Compared to e.g. powder diffraction, imaging often uses slightly different geometries and hence requires a calibration for each particular setup. We herein show the importance of this calibration across the entire FOV in order to determine the instrumental error correction for pulsed neutron beamlines.

Accesses

:

- Accesses

InCites™

:

Percentile:81.22

Category:Instruments & Instrumentation

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.