Refine your search:     
Report No.
 - 

Late-Holocene salinity changes in Lake Ogawara, Pacific coast of northeast Japan, related to sea-level fall inferred from sedimentary geochemical signatures

Nara, Fumiko*; Watanabe, Takahiro   ; Matsunaka, Tetsuya*; Yamasaki, Shinichi*; Tsuchiya, Noriyoshi*; Seto, Koji*; Yamada, Kazuyoshi*; Yasuda, Yoshinori*

Radiocarbon dating, tephrochronology, and geochemical signatures such as bromine (Br), iodine (I), total sulfur (TS), total organic carbon (TOC), and total nitrogen (TN) in a continuous sediment core (OG12-2) were applied to estimate past salinity change on the Lake Ogawara, Pacific coast of northeast Japan. Since the Lake Ogawara was the inner bay of the Pacific Ocean and became the brackish lake in the late Holocene, clarifying the past salinity change on the lake Ogawara could give us important insight into the past sea level changes of the Pacific Ocean. The core OG12-2 has two tephra layers, the Towada eruption and the Changbaishan eruption (B-Tm: AD 946). The age model for the core OG12-2 was established using the radiocarbon measurements of the plant residues in the core, also was constrained by the B-Tm tephra. Depletions of marine-derived elements (Br, I, and TS), from 88.4 to 64.2 mg/kg, 20.0 to 14.1 mg/kg, and 3.1 to 1.1 mass %, respectively, were observed in the layers with 2200-2000 cal BP. These results indicate paleosalinity changes from saline (inner bay) to brackish conditions within Lake Ogawara caused by sea level fluctuations during the late Holocene.

Accesses

:

- Accesses

InCites™

:

Percentile:28.09

Category:Geography, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.