Refine your search�ソスF     
Report No.
 - 

Overview and main outcomes of the pool scrubbing lumped-parameter code benchmark on hydrodynamic aspects in IPRESCA project

Marchetto, C.*; Ha, K. S*; Herranz, L. E.*; Hirose, Yoshiyasu  ; Jankowski, T.*; Lee, Y.*; Nowack, H.*; Pellegrini, M.*; Sun, X.*

After the Fukushima Daiichi accident of March 2011, one of the main concerns of the nuclear industry has been the research works for improving atmospheric radioactive release mitigation systems. Pool scrubbing is an important process in reactors that mitigates radioactive release. It is based on the injection of gases containing fission products through a water pool. Bubble hydrodynamics, as a result of gas injection and the associated water pool thermal-hydraulics, is an important aspect of the process since the bubble size, shape, velocity, etc. influence the fission product trapping at the bubble interface with the water. Computer codes dedicated to the pool scrubbing have been mainly developed in the 90's last century and modelling drawbacks have been identified in particular for bubble hydrodynamics. One of IPRESCA project objectives is to improve the pool scrubbing modelling. In order to highlight the main modelling issues, a benchmark exercise has been performed focusing on the bubble hydrodynamics. This benchmark, performed by nine organisations coming from six countries, aims at simulating a basic configuration, a single upward injector in ambient conditions, experimentally characterized in the RSE tests carried out in the European PASSAM project. In this paper, a short description of the code modelling and a comparison between the code results and the experimental data are presented and discussed. Then, outcomes from the benchmark result analysis and proposals of improvements are emphasized.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.