Refine your search:     
Report No.

Detecting halfmetallic electronic structures of spintronic materials in a magnetic field

Fujiwara, Hidenori*; Umetsu, Rie*; Kuroda, Fumiaki*; Miyawaki, Jun*; Kashiuchi, Toshiyuki*; Nishimoto, Kohei*; Nagai, Kodai*; Sekiyama, Akira*; Irizawa, Akinori*; Takeda, Yukiharu  ; Saito, Yuji ; Oguchi, Tamio*; Harada, Yoshihisa*; Suga, Shigemasa*

Band-gap engineering is one of the fundamental techniques in semiconductor technology. To fully utilize the spintronic material, it is essential to optimize the spin-dependent electronic structure in operando conditions by applying the magnetic and/or electric fields. Here we present a new spectroscopic technique to probe the spin-polarized electronic structures by using magnetic circular dichroism (MCD) in resonant inelastic soft X-ray scattering (RIXS) under an external magnetic field. Thanks to the spin-selective dipole-allowed transitions in the RIXS-MCD, we have successfully demonstrated the direct evidence of the perfectly spin-polarized electronic structures for the prototypical halfmetallic Heusller alloy, Co$$_{2}$$MnSi. The RIXS-MCD is a promising tool to probe the spin-dependent carriers and band-gap with element specific way induced in buried magnetic layers under operando conditions.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.