Refine your search:     
Report No.
 - 

Nanoscale heterogeneity induced by nonmagnetic Zn dopants in the quantum critical metal CeCoIn$$_5$$; $$^{115}$$In NQR/NMR and $$^{59}$$Co NMR study

Sakai, Hironori  ; Tokunaga, Yo ; Kambe, Shinsaku ; Zhu, J.-X.*; Ronning, F.*; Thompson, J. D.*; Ramakrishna, S. K.*; Reyes, A. P.*; Suzuki, Kohei*; Oshima, Yoshiki*; Yokoyama, Makoto*

Antiferromagnetism in a prototypical quantum critical metal CeCoIn$$_5$$ is known to be induced by slight substitutions of non-magnetic Zn atoms for In. In nominally 7% Zn substituted CeCoIn$$_5$$, an antiferromagnetic (AFM) state coexists with heavy fermion superconductivity. Heterogeneity of the electronic states is investigated in Zn doped CeCoIn$$_5$$ by means of nuclear quadrupole and magnetic resonances (NQR and NMR). Site-dependent NQR relaxation rates $$1/T_1$$ indicate that the AFM state is locally nucleated around Zn substituents in the matrix of a heavy fermion state, and percolates through the bulk at the AFM transition temperature $$T_{rm N}$$. At lower temperatures, an anisotropic superconducting (SC) gap below the SC transition temperature $$T_{rm c}$$, and the SC state permeates through the AFM regions via a SC proximity effect. Applying an external magnetic field induces a spin-flop transition near 5 T, reducing the volume of the AFM regions. Consequently, a short ranged inhomogeneous AFM state survives and coexists with a paramagnetic Fermi liquid state at high fields.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.