Refine your search:     
Report No.
 - 

Study on the thermal behavior of Carbon-Fiber-Reinforced-Plastic (CFRP) sheet using a periodic heating method

Nagata, Sho*; Nishi, Tsuyoshi*; Ota, Hiromichi*; Igarashi, Takahiro  ; Miyake, Shugo*

Due to the increasing heat generation density of electronic devices, unidirectional Carbon-fiber-reinforced Plastic (CFRP) has gained interest as a heat-dissipating material owing to its high thermal conductivity, high anisotropy, and high strength. If CFRPs can be used to conduct heat in the desired direction of dissipation, more efficient thermal designs are possible. To control heat propagation, it is necessary to understand the heat propagation behavior within CFRPs at each fiber angle by determining the direction of heat propagation, referred to as thermal orientation. We previously demonstrated an approach for determining the thermal orientation of CFRPs using a periodic heating method, wherein the heat propagation in CFRPs was classified into two directions: the direction of the carbon fiber direction and the direction of the fiber-matrix interface. It has been suggested that the fiber-matrix interface has a significant effect on the heat propagation of CFRPs, which increases with the increase in CFRP thickness. However, the effect of CFRP thickness on thermal orientation is yet unknown. In the current study, we investigated the effect of the fiber-matrix interface on thermal orientation using the periodic heating method for CFRPs with varying thicknesses.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.