Refine your search:     
Report No.
 - 

Step-by-step challenge of debris characterization for the decommissioning of Fukushima-Daiichi Nuclear Power Station (FDNPS)

Kurata, Masaki ; Okuzumi, Naoaki*; Nakayoshi, Akira  ; Ikeuchi, Hirotomo  ; Koyama, Shinichi  

Immediately after the 1F-accident, various attempts have been made to evaluate the fuel debris characteristics toward the decommissioning of 1F. The present review outlines those attempts. In the years immediately following the 1F-accident, the knowledge obtained from the 1F-site (especially from the damaged reactors of Units 1, 2 and 3) was extremely limited. The approximate location of fuel debris was investigated by muon tomography, and its characteristics were roughly estimated based on the past findings such as the results of the Three Mile Island-II accident investigation in the United States, which gave us information of prototypical accident scenarios and debris characteristics for pressurized water reactor accident. After that, various internal investigation robots were developed, and from 2017, investigation of the inside of the reactor containment vessel was started using these robots. Consequently, these three units were found to have core damage status and debris distribution that were rather different from what had been expected based on the typical accident scenario of a pressurized water reactor. In parallel, a small amount of U-bearing particle was recovered from the smear samples of these robots. The analysis of these particles is ongoing to get information relevant to fuel debrsi body. Furthermore, international collaboration is ongoing mainly under OECD/NEA, including accident analysis and debris characterization. From now on, one need to further understand 1F-accident scenario and progress debris characterization based on these 1F-site information.

Accesses

:

- Accesses

InCites™

:

Percentile:95.93

Category:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.