Refine your search:     
Report No.

Developing DGS for reprocessing plant nuclear safeguards; Designing a compact instrument

Rossi, F. ; Abbas, K.*; Koizumi, Mitsuo ; Lee, H.-J.; Nonneman, S.*; Pedersen, B.*; Rodriguez, D. ; Takahashi, Tone

In the field of nuclear material samples safeguard verifications, mixed high-radioactivity nuclear material in facility like reprocessing nuclear plant are challenging. Addressing this, the JAEA/ISCN is developing a DG-nondestructive assay technique. We successfully completed several experiments in collaboration with the EC/JRC to evaluate the instrumentation requirements of a compact instrument. In principle, a neutron source is used to produce neutrons that are then thermalized in a moderator before reaching the sample to induce fission. The optimization of the moderator is crucial to reach an efficient and compact instrument. Having a good thermalized neutron flux enhances the delayed gamma-ray signature of the fissile due to their greater thermal fission cross section compared to the fertile. After the irradiation, the gamma-ray peaks above 3 MeV are analyzed to determine the initial composition of the fissile nuclides. The gamma-ray spectrum and subsequent analysis are strongly affected by the source type; the sample; and the interrogation pattern, driven by the analysis. To investigate all these aspects, we performed several experiments using small standard samples of both Uranium and Plutonium with PUNITA to understand basic principles. These were factored into the JAEA DGCT instrument that was tested in PERLA. This work first describes the PUNITA and PERLA experiments and how these were used to validate the various model designs. From these, further modifications to reach our final instrument concept design for a deuterium-deuterium neutron generator source are presented. This work is supported by MEXT under the subsidy for the "promotion for strengthening nuclear security and the like". This work was done under the agreement between JAEA and EURATOM in the field of nuclear material safeguards research and development.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.