Refine your search:     
Report No.
 - 

Estimation of radioactivity and dose equivalent rate by combining Compton imaging and Monte Carlo radiation transport code

Sato, Yuki  

In a radiation environment, such as the decommissioning site of a nuclear power station, visualization of the distribution of radioactive substances and estimation of the dose equivalent rate around the site can help reduce the exposure dose of workers and plan their work. The author has developed a method of visualizing the existence of a radiation source using a gamma-ray imager, estimating its radioactivity, and estimating the dose equivalent rate around the source. A Compton camera, which is a gamma-ray imager, is used to visualize the existence of a $$^{137}$$Cs radiation source and estimate its radioactivity, and a three-dimensional (3D) model of the region around the source is generated using a simultaneous localization and mapping device based on 3D light detection and ranging. Next, the dose equivalent rate around the source is calculated by importing the 3D model data and radioactivity information into a particle and heavy ion transport code system code. The validity of the calculated dose equivalent rates was confirmed by comparing them with values measured using a survey meter. This method can be used not only to simply visualize a source and calculate the dose equivalent rate around it but also to evaluate how addition of shielding or removal of contaminated objects can contribute to reducing the dose equivalent rate.

Accesses

:

- Accesses

InCites™

:

Percentile:14.76

Category:Chemistry, Inorganic & Nuclear

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.