Refine your search:     
Report No.

Effect of B$$_{4}$$C absorber material on melt progression and chemical forms of iodine or cesium under severe accident conditions

Hidaka, Akihide   

Boron carbide (B$$_{4}$$C) used for BWR or EPR absorbers could cause phenomena that never occur in PWR with Ag-In-Cd absorbers during a severe accident (SA). B$$_{4}$$C would undergo a eutectic interaction with stainless steel and enhance core melt relocation. Boron oxidation could increase H$$_{2}$$ generation, and the change of liberated carbon to CH$$_{4}$$ could enhance the generation of CH$$_{3}$$I. HBO$$_{2}$$ generated during B$$_{4}$$C oxidation could be changed to CsBO$$_{2}$$ by combining it with cesium. This may increase Cs deposition into the RCS. There could be differences in the configuration, surface area, and stainless-steel to B$$_{4}$$C weight ratio between the B$$_{4}$$C powder and pellet absorbers. The present task is to clarify the effect of these differences on melt progression, and the iodine or Cs source term. Advancement of this research field could contribute to further sophistication of prediction tools for melt progression and source terms of the Fukushima Accident, and the treatment of CH$$_{3}$$I formation in safety evaluation.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.