Refine your search:     
Report No.
 - 

High reactivity of H$$_{2}$$O vapor on GaN surfaces

Sumiya, Masatomo*; Sumita, Masato*; Tsuda, Yasutaka   ; Sakamoto, Tetsuya; Sang, L.*; Harada, Yoshitomo*; Yoshigoe, Akitaka 

GaN is an attracting material for power-electronic devices. Understanding the oxidation at GaN surface is important for improving metal-oxide-semiconductor (MOS) devices. In this study, the oxidation at GaN surfaces depending on the GaN crystal planes (+c, -c, and m-plane) was investigated by real time XPS and DFT-MD simulation. We found that H$$_{2}$$O vapor has the highest reactivity due to the spin interaction between H$$_{2}$$O and GaN surfaces. The bond length between the Ga and N on the -c GaN surface was increased by OH attacking the back side of three-fold Ga atom. The chemisorption on the m-plane was dominant. The intense reactions of oxidation and Al$$_{x}$$Ga$$_{1-x}$$N formation for p-GaN were observed at the interface of the Al$$_{2}$$O$$_{3}$$ layer deposited by ALD using H$$_{2}$$O vapor. This study suggests that an oxidant gas other than H$$_{2}$$O and O$$_{2}$$ should be used to avoid unintentional oxidation during Al$$_{x}$$Ga$$_{1-x}$$N atomi layer deposition.

Accesses

:

- Accesses

InCites™

:

Percentile:51.62

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.