Refine your search:     
Report No.

Electrochemically driven specific alkaline metal cation adsorption on a graphene interface

Yasuda, Satoshi  ; Tamura, Kazuhisa  ; Kato, Masaru*; Asaoka, Hidehito ; Yagi, Ichizo*

Understanding electrochemical behavior of the alkaline metal cation-graphene interface in electrolyte is essential for understanding the fundamental electrochemical interface and development of graphene-based technologies. We report comprehensive analysis of the electrochemical behavior of both alkaline metal cations and graphene using electrochemical surface X-ray diffraction (EC-SXRD) and Raman (EC-Raman) spectroscopic techniques in which the interfacial structure of cations and the charging state and mechanical strain of the graphene can be elucidated. EC-SXRD and cyclic voltammetry demonstrated electrochemically driven specific adsorption and desorption of cations on the graphene surface involved in the dehydration and hydration process. This study provides new insight for understanding fundamental electrochemical behavior of the alkaline metal cation-graphene interface and contributes to the development of carbon-based novel applications.



- Accesses





[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.